Mining protein function from text using term-based support vector machines
نویسندگان
چکیده
منابع مشابه
STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملArabic Text Classification Using Support Vector Machines
Text classification (TC) is the process of classifying documents into a predefined set of categories based on their content. Arabic language is highly inflectional and derivational language which makes text mining a complex task. In this paper we applied the Support Vector Machines (SVM) model in classifying Arabic text documents. The results compared with the other traditional classifiers Baye...
متن کاملUsing Support Vector Machines in Data Mining
Multivariate data analysis techniques have the potential to improve data analysis. Support Vector Machines (SVS) are a recent addition to the family of multivariate data analysis. A brief introduction to the SVM Vector Machines technique is followed by an outline of the practical application Key-Words: SVM vector machines, data analysis
متن کاملMining Stock Market Tendency Using GA-Based Support Vector Machines
In this study, a hybrid intelligent data mining methodology, genetic algorithm based support vector machine (GASVM) model, is proposed to explore stock market tendency. In this hybrid data mining approach, GA is used for variable selection in order to reduce the model complexity of SVM and improve the speed of SVM, and then the SVM is used to identify stock market movement direction based on th...
متن کاملSupport Vector Machines for Large Scale Text Mining in R
SVM are an established tool in machine learning and data analysis. Though many implementations of SVM exist often specific applications require tailor made algorithms. In text mining in particular the data often comes in large sparse data matrices. Typical SVM algorithms like SMO do not take advantage of the sparsity, and do not scale well to data sets with millions of entries. In this paper we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2005
ISSN: 1471-2105
DOI: 10.1186/1471-2105-6-s1-s22